26 research outputs found

    The case for the development of novel human skills capture methodologies

    Get PDF
    As the capabilities of industrial automation are growing, so is the ability to supplement or replace the more tacit, cognitive skills of manual operators. Whilst models have been published within the human factors literature regarding automation implementation, they neglect to discuss the initial capture of the task and automation experts currently lack a formal tool to assess feasibility. The definition of what is meant by "human skill" is discussed and three crucial theoretical underpinnings are proposed for a novel, automation-specific skill capture methodology: emphasis upon procedural rules, emphasis upon action-facilitating factors and taxonomy of skill

    Task analysis of discrete and continuous skills: a dual methodology approach to human skills capture for automation

    Get PDF
    There is a growing requirement within the field of intelligent automation for a formal methodology to capture and classify explicit and tacit skills deployed by operators during complex task performance. This paper describes the development of a dual methodology approach which recognises the inherent differences between continuous tasks and discrete tasks and which proposes separate methodologies for each. Both methodologies emphasise capturing operators’ physical, perceptual, and cognitive skills, however, they fundamentally differ in their approach. The continuous task analysis recognises the non-arbitrary nature of operation ordering and that identifying suitable cues for subtask is a vital component of the skill. Discrete task analysis is a more traditional, chronologically ordered methodology and is intended to increase the resolution of skill classification and be practical for assessing complex tasks involving multiple unique subtasks through the use of taxonomy of generic actions for physical, perceptual, and cognitive actions

    On the quantum-to-classical transition of a particle in a box

    Get PDF
    The exact formulation of the correspondence principle and in particular understanding the quantum-to-classical transition remains an open problem in quantum mechanics. In this paper we present our investigation into the quantumto-classical transition of the most trivial of quantum systems — a particle in a box. Whilst it is perhaps surprising, even this example can produce new physical insight into these fundamental problems. With modern fabrication techniques of nano-mechanical systems we will be able to experimentally investigate these results and directly observe the quantum-to-classical transition. This will enable us to build technologies that probe the fundamental questions of quantum mechanics, such as the maximum size of a quantum object

    The quantity and composition of household food waste during the COVID-19 pandemic: A direct measurement study in Canada

    Get PDF
    The COVID-19 pandemic may have amplified the environmental, social, and economic implications of household food waste. A better understanding of household food wasting during the pandemic is needed to improve the management of waste and develop best practices for municipal waste management programs under crisis circumstances. A waste composition study was undertaken with 100 single-family households across the city of London, Ontario, Canada to determine the quantity and composition of household food waste disposed in June 2020, during the first wave of the COVID-19 pandemic. This study examines how household demographic, socioeconomic, and neighbourhood food environment characteristics influence household food wasting. On average, each household sent 2.81 kg of food waste to landfill per week, of which 52% was classified as avoidable food waste and 48% as unavoidable food waste. The quantity and composition of household food waste was found to be strongly influenced by the number of people and children in a household, and somewhat influenced by socioeconomic factors and neighbourhood food environment characteristics, including the availability, density, and proximity of retail food outlets

    Can understanding reward help illuminate anhedonia?

    Get PDF
    Purpose of review: The goal of this paper is to examine how reward processing might help us understand the symptom of anhedonia. Recent findings: There are extensive reviews exploring the relationship between responses to rewarding stimuli and depression. These often include a discussion on anhedonia and how this might be underpinned in particular by dysfunctional reward processing. However, there is no specific consensus on whether studies to date have adequately examined the various sub-components of reward processing or how these might relate in turn to various aspects of anhedonia symptoms. Summary: The approach to understanding the symptom of anhedonia should be to examine all the sub-components of reward processing at the subjective and objective behavioural and neural level, with well validated tasks that can be replicated. Investigating real life experiences of anhedonia and how theses might be predicted by objective lab measures is also needed in future research

    Colloids as Mobile Substrates for the Implantation and Integration of Differentiated Neurons into the Mammalian Brain

    Get PDF
    Neuronal degeneration and the deterioration of neuronal communication lie at the origin of many neuronal disorders, and there have been major efforts to develop cell replacement therapies for treating such diseases. One challenge, however, is that differentiated cells are challenging to transplant due to their sensitivity both to being uprooted from their cell culture growth support and to shear forces inherent in the implantation process. Here, we describe an approach to address these problems. We demonstrate that rat hippocampal neurons can be grown on colloidal particles or beads, matured and even transfected in vitro, and subsequently transplanted while adhered to the beads into the young adult rat hippocampus. The transplanted cells have a 76% cell survival rate one week post-surgery. At this time, most transplanted neurons have left their beads and elaborated long processes, similar to the host neurons. Additionally, the transplanted cells distribute uniformly across the host hippocampus. Expression of a fluorescent protein and the light-gated glutamate receptor in the transplanted neurons enabled them to be driven to fire by remote optical control. At 1-2 weeks after transplantation, calcium imaging of host brain slice shows that optical excitation of the transplanted neurons elicits activity in nearby host neurons, indicating the formation of functional transplant-host synaptic connections. After 6 months, the transplanted cell survival and overall cell distribution remained unchanged, suggesting that cells are functionally integrated. This approach, which could be extended to other cell classes such as neural stem cells and other regions of the brain, offers promising prospects for neuronal circuit repair via transplantation of in vitro differentiated, genetically engineered neurons

    Travel Writing and Rivers

    Get PDF

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Effective Bandwidth Based Admission Control for Multi-Service CDMA Cellular Networks

    No full text
    In this paper we develop product form traffic models for single and multiple cell CDMA networks with multiple classes of mobile subscriber. The key feature of this development is the specification of a flexible call admission control procedure that details the numbers of mobiles of each class in each cell that the system operator should allow in order to maintain an acceptable quality of service. Effective bandwidth techniques from the analysis of statistical multiplexing at an ATM-based broadband ISDN link are used to give performance guarantees that overcome the variability in interference levels characteristic of CDMA cellular networks. The result is an admissible region bounded by a finite number of hyperplanes and a simple, efficient, call admission policy. The CDMA mobile network, operating within the admissible region described above, has a very similar form to a circuit-switched network operating with fixed routing. This similarity allows the existing traffic modelling techniqu..
    corecore